Amla Enhances Mitochondrial Spare Respiratory Capacity by Increasing Mitochondrial Biogenesis and Antioxidant Systems in a Murine Skeletal Muscle Cell Line

نویسندگان

  • Hirotaka Yamamoto
  • Katsutaro Morino
  • Lemecha Mengistu
  • Taishi Ishibashi
  • Kohei Kiriyama
  • Takao Ikami
  • Hiroshi Maegawa
چکیده

Amla is one of the most important plants in Indian traditional medicine and has been shown to improve various age-related disorders while decreasing oxidative stress. Mitochondrial dysfunction is a proposed cause of aging through elevated oxidative stress. In this study, we investigated the effects of Amla on mitochondrial function in C2C12 myotubes, a murine skeletal muscle cell model with abundant mitochondria. Based on cell flux analysis, treatment with an extract of Amla fruit enhanced mitochondrial spare respiratory capacity, which enables cells to overcome various stresses. To further explore the mechanisms underlying these effects on mitochondrial function, we analyzed mitochondrial biogenesis and antioxidant systems, both proposed regulators of mitochondrial spare respiratory capacity. We found that Amla treatment stimulated both systems accompanied by AMPK and Nrf2 activation. Furthermore, we found that Amla treatment exhibited cytoprotective effects and lowered reactive oxygen species (ROS) levels in cells subjected to t-BHP-induced oxidative stress. These effects were accompanied by increased oxygen consumption, suggesting that Amla protected cells against oxidative stress by using enhanced spare respiratory capacity to produce more energy. Thus we identified protective effects of Amla, involving activation of mitochondrial function, which potentially explain its various effects on age-related disorders.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Histochemical And Electron Microscopic Diagnosis Of Mitochondrial Myopathy: The First Case Report From Iran

  Muscle tissue, skeletal muscle as well as cardiac muscle, is commonly affected in mitochondrial disorders. One explanation for this observation is that muscle tissue has a high-energy demand and therefore is more sensitive to a deficiency of mitochondrial energy production than some other tissues. In mitochondrial disorders, skeletal muscle tissue may be affected primarily by defective respi...

متن کامل

Molecular Mechanisms for Age-Associated Mitochondrial Deficiency in Skeletal Muscle

The abundance, morphology, and functional properties of mitochondria decay in skeletal muscle during the process of ageing. Although the precise mechanisms remain to be elucidated, these mechanisms include decreased mitochondrial DNA (mtDNA) repair and mitochondrial biogenesis. Mitochondria possess their own protection system to repair mtDNA damage, which leads to defects of mtDNA-encoded gene ...

متن کامل

Aberrant Mitochondrial Homeostasis in the Skeletal Muscle of Sedentary Older Adults

The role of mitochondrial dysfunction and oxidative stress has been extensively characterized in the aetiology of sarcopenia (aging-associated loss of muscle mass) and muscle wasting as a result of muscle disuse. What remains less clear is whether the decline in skeletal muscle mitochondrial oxidative capacity is purely a function of the aging process or if the sedentary lifestyle of older adul...

متن کامل

Muscle-specific knockout of general control of amino acid synthesis 5 (GCN5) does not enhance basal or endurance exercise-induced mitochondrial adaptation

OBJECTIVE Lysine acetylation is an important post-translational modification that regulates metabolic function in skeletal muscle. The acetyltransferase, general control of amino acid synthesis 5 (GCN5), has been proposed as a regulator of mitochondrial biogenesis via its inhibitory action on peroxisome proliferator activated receptor-γ coactivator-1α (PGC-1α). However, the specific contributio...

متن کامل

Skeletal muscle Nur 77 expression enhances oxidative metabolism and substrate utilization

The mitochondrion is an indispensable component for cellular respiration. To meet ongoing energy demands, cells up-regulate oxidative metabolism to boost ATP production. In skeletal muscle, a number of transcriptional factors have been shown to affect mitochondrial function and biogenesis. Peroxisome proliferator activated receptor  coactivator 1  (Pgc1 ), for instance, coactivates a number ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2016  شماره 

صفحات  -

تاریخ انتشار 2016